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Abstract: Submodule construction is the problem of finding a new submodule which, together with a given 
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_______________________________________________________________________ 
 

1. Introduction 

In automata theory, the notion of constructing a product machine S from two given finite 

state machines MA and MB , written M = MA x MB, is a well-known concept (see Figure 

1(a)). This notion is very important in practice since complex systems are usually 

constructed as a composition of smaller subsystems, and the behavior of the overall 

system is in many cases equal to the composition obtained by calculating the product of 

the behaviors of the two subsystems. Here we consider the inverse operation, called 

“equation solving” or “submodule construction”: Given the behavior of the composed 

system M and one of the components MA, what should be the behavior of the second 

component MB such that the composition of these two components MA and MB will 

exhibit a behavior desired for M. That is, we are looking for the value of X which is the 

solution to the equation MA x  X  = M (see Figure 1(b)). This problem is an analogy of 

integer division, which provides the solution to the equation N1 * X = N for integer 

values N1 and N. In integer arithmetic, there is in general no exact solution to this 

equation; therefore integer division provides the largest integer which multiplied with N1 

is smaller than N. Similarly, in the case of equation solving for machine composition, we 

are looking for the most general machine X which composed with MA satisfies some 

conformance relation in respect to M. In the simplest case, this conformance relation is 

trace inclusion. 
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(a)                                                                 (b)   

    Figure 1: (a) two communicating components; (b) submodule construction problem 

A first paper [Bochmann and Merlin, 1980] gives a solution to this problem for the 

case where the machine behavior is described in terms of labeled transition systems 

(LTS) which communicate with one another by interleaved rendezvous interactions  (see 

also [Hagverdi et al. 1999] for a more formal treatment).  This work was later extended to 

the cases where the behavior of the machines is described in CSP [Hoare, 1985] (with 

behavioral equivalence as conformance relation) [Parrow, 1989] and for process algebras 

with bisimulation equivalence as conformance relation [Larsen 1990]. In the context of 

state machines, solutions have also been described for finite state machines (FSM) 

communicating through message queues [Petrenko et al. 1998, Yevtushenko 2008], by 

input/output automata (IOA) [Qin 1991, Drissi 1999, Bochmann 2002, Bhaduri 2008], 

and by synchronous finite state machines [Kim 1997, Yevtushenko 2000]. The case of 

extended state machine models including state variables and assertions about input and 

output parameters has also been studied [Daou 2005]. The problem has also been 

formulated for databases using relational algebra [Bochmann 2002a].  

One application of this submodule construction method was considered in the 

context of the design of communication protocols, where the components MA and MB 

may represent two protocol entities that communicate with one another [Bochmann and 

Merlin, 1980]. Later it was recognized that this method could also be useful for the 

design of protocol converters in communication gateways [Kelekar 1994, Tao 1997, 

Kumar 1997], and for the selection of test cases for testing a module in a given context 

[Petrenko 1996]. It is expected that it could also be used in other application domains 

where the re-use of components is important. If the specification of the desired system is 

given together with the specification of a module to be used as one component in the 

system, then equation solving provides the specification of a new component to be 

combined with the existing one. 

Independently, the same problem was identified in control theory for discrete event 

systems [Ramadge and Wonham 1989] as the problem of finding a controller for a given 

system to be controlled. In this context, the specification MA of the system to be 

controlled is given, as well as the specification of certain properties that the overall 

system, including the controller, should satisfy. If these properties are described by M, 

and the behavior of the controller is X, then we are looking for the behavior of X such 

that the equation MA x  X  = M is satisfied. Solutions to this problem are also described in 

[Brandin 1994] using a specification formalism of labeled transition systems where a 

distinction of input and output is made; interactions of the system to be controlled may be 

controllable (which corresponds to output generated by the controller) or uncontrollable 

(which corresponds to input to the controller). This specification formalism seems to be 
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equivalent to input/output automata (IOA) [Lynch 1989] or input/output transition 

systems (IOTS) [Tretmans 1996]. 

The purpose of this paper is to show that the submodule construction (or equation 

solving) problem can be formulated in logic. It turns out that (a) a solution exists with a 

structure similar to the solutions presented in the literature, and (b) a proof of the 

correctness of this solution in logic is quite simple, apparently much simpler than the 

existing proofs of correctness for the solutions found in the literature. We show in this 

paper how the solutions for submodule construction in various contexts can be derived 

from the solution in the logic context. The proof of correctness from the logic context can 

therefore be used to justify the particular forms of solutions in the different contexts. 

These contexts differentiate themselves mainly by the nature of the communication 

between the different system components. We consider in this paper the following 

communication paradigms: (a) synchronous rendezvous at several interfaces, (b) 

interleaved rendezvous (that is, labeled transition systems), (c) synchronous (I/O) 

automata with complete or partial behavior specifications, (d) interleaving IOA with 

complete or partial behavior specifications. These contexts include much of the previous 

work mentioned above and also some not so common modeling approaches, such as 

synchronous rendezvous at multiple interfaces, and synchronous input/output automata 

with partial behavior specifications. We do not cover in this paper the context of (e) 

communicating finite state machines (see [Petrenko 1998, Yevtushenko 2008]), and (f) 

relational algebras [Bochmann 2002a] which is similar to the logic context. We mention 

that most of the equations derived in this paper are independent of any particular 

formalism that may be used for describing the dynamic behavior of the different system 

components, because our reasoning is based on trace semantics, which means, we are 

interested in the possible sequences of interactions. In addition, we consider the 

specification formalism of state machines, that is, regular behaviors, because they allow 

the definition of algorithms for the solution of the submodule construction problem. In 

this context, we also go beyond trace semantics and consider the absence of deadlocks 

and other types of blocking.  

The paper is structured as follows: The next section presents the problem of equation 

solving in the general context of first-order logic. The main concepts and equations are 

established which are then referenced in the later sections. In Section 3, the submodule 

construction problem is introduced in the context of modular system design where the 

overall system is composed out of several components and the behavior of one of the 

components is to be found. This section deals with synchronous communication between 

all the components. Several simple examples are introduced in order to explain in detail 

the different steps of the submodule construction algorithm. Algorithms for deriving a 

most general solution are given for the case that the given behavior specifications are 

regular, including the case of prefix-closed behaviors and the elimination of deadlocks. 

We note, however, that the derived solution equations are valid in general for trace-based 

specifications. Also a new algorithm is given to find a progressive solution, that is, a 
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solution that has the same blocking behavior as the desired behavior M, if such a solution 

exists.  

Section 4 shows how the synchronous modeling framework can be used to model 

interleaving semantics, as used by labeled transition systems (LTS). Although the 

solution equations and algorithms for regular behaviors with interleaving semantics look 

similar to the case of synchronous communication, the nature of these systems with 

interaction interleaving is quite different. Again, a new algorithm for finding a 

progressive solution is provided. Communication through inputs and outputs is 

considered in Section 5, and the different cases of complete and partial specifications 

with synchronous or interleaving communication are considered. Section 6 contains our 

concluding discussion.   

 

2. EQUATION SOLVING IN THE LOGIC CONTEXT 

2.1. The logic context 

We use in this section set theory and first-order logic with typed variables. We consider a 

universe with three variables XA, XB, and XC that may take values from three domains 

DA DB and DC , respectively. These domains may be infinite. The set of all possible value 

assignments to the variables is then U = DA  DB  DC . We write xA, xB, and xC for 

possible values of the variables XA, XB, and XC , respectively. 

We are interested in relationships between values of different variables. For instance, 

we may consider a relation R DA  DB  which is a subset of pairs < xA, xB > of possible 

values of the variables XA and XB . As usual, we use predicates to characterize sets. For 

instance, the relation R may be characterized by a predicate C(xA, xB) which is true 

exactly for those pairs < xA, xB > that are in R.  More formally, R = {< xA, xB > | C(xA, 

xB) }. In this paper, we use an abbreviated notation for such a set of pairs:  [ C(xA, xB) ] 

is, by definition, equal to {< xA, xB > | C(xA, xB) }. 

 

2.2.  The equation solving problem 

In the following, we are interested in three relations RA DB  DC, RB DA  DCand RC 

DA  DB . We write CA(xB, xC) , CB(xA, xC) , and CC(xA, xB) for their respective 

characterizing predicates.  We consider the following proposition which relates these 

three relations: 

 < xA, xB, xC >  U :   CA(xB, xC)  CB(xA, xC)   CC(xA, xB)                     (1) 

The problem of equation solving is the following: We assume that CA and CC are 

given. The question is the following: What are the properties of predicate CB that ensure 

that proposition (1) is satisfied?  

Definition 2-1 (a solution): We say that a predicate CB is a solution to the equation 

solving problem if it satisfies equation (1).  

Lemma 2-1: The predicate  

        CB
max(xA, xC)  =   xB  DB :   CA(xB, xC)  CC(xA, xB)                     (2) 
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is a solution of the equation solving problem. 

The proof if this lemma is trivial. We note that the right side of Equation (2) can be 

equivalently transformed in several steps as follows: 

             xB  DB :    CA(xB, xC)  CC(xA, xB)    

             xB  DB :     ( CA(xB, xC)  CC(xA, xB)  )  

             xB  DB :  CA(xB, xC)  CC(xA, xB)   

Therefore, we have the following equivalent expression for this solution:  

           CB
max (xA, xC)  =    xB  DB :   CA(xB, xC)  CC(xA, xB)                  (3) 

Let us now consider any predicate CB
’ (xA, xC)  that is stronger than CB

max(xA, xC), 

that is,  CB
’ (xA, xC) CB

max(xA, xC). Using Equation (2), it is easy to see that such a 

predicate is also a solution to the equation solving problem. However, any weaker 

predicate will not be a solution. This can be shown as follows: Let us assume 

thatCB
max(xA, xC) CB

’’ (xA, xC) and CB
max(xA, xC)≠ CB

’’ (xA, xC); then there must 

exist a pair <xA, xC> such that CB
’’ (xA, xC) and  CB

max(xA, xC). Using equation (3), we 

see that  

              xB  DB :   CA(xB, xC)  CC(xA, xB). 

Therefore, for the tuple <xA, xB, xC > Equation (1) will not be satisfied. 

To summarize, we can state the following proposition: 

Proposition 2-1 (maximal solution): The predicates CB
max (xA, xC) defined by Equations 

(2) and (3) are equivalent and define the maximal (i.e. weakest) solution to the equation 

solving problem and any (stronger) predicate CB
’ (xA, xC) that satisfies CB

’ (xA, xC) 

CB
max(xA, xC) is also a solution.  

 
2.3. The realized subset of [ CC(xA, xB) ] 

We recall that CC(xA, xB) defines the subset [ CC(xA, xB) ] of all pairs <xA, xB>  DA  DB 

that satisfy  CC(xA, xB). Given any solution CB (xA, xC) to the equation solving problem, 

Equation (1) ensures that  

                 [CC
real(xA, xB) ] = [   xC  DC :   CA(xB, xC)  CB(xA, xC) ]              (4) 

is included in [ CC(xA, xB) ].  

Definition 2-2 (realized subset of C): The set of pairs < xA, xB >  defined by Equation 

(4) is called the subset of [CC(xA, xB)] realized by the solution CB (xA, xC).  The subset 

realized by the maximal solution is called the maximally realized subset of [CC(xA, xB)]. 

We say that a solution is complete if the maximally realized subset is equal to [CC(xA, 

xB)]. 

 
Lemma 2-2: Any solution to the equation solving problem that satisfies the predicate 

                CB
incomp (xA, xC) =    xB  DB :  CA(xB, xC)  CC(xA, xB)  

has an empty realized subset. 



6 

Proof: Let us assume that there is a pair  <xA, xB>  [ CC(xA, xB) ]  that is realized. This 

implies according to equation (4) that  

  xC  DC :   CA(xB, xC)  CB
incom (xA, xC) 

However, this is a contradiction to the assumption of the Lemma, since CB(xA, xC) – 

together with CA(xB, xC)  - implies CC(xA, xB), because CB
incom (xA, xC) is a solution. � 

We conclude from Lemma 2-2 that those pairs <xA, xC> of any solution [CB
max] that 

are in [CB
incomp] do not contribute to the realized pairs ofCC

real ]. We therefore may 

eliminate those pairs from the solution and still obtain the same realized subsetCC
real ]. 

We say that such a solution is reduced.  It follows that the maximal reduced solution is 

defined by the predicate CB
red (xA, xC) = CB

max (xA, xC)  CB
incomp (xA, xC) and we can 

state the proposition: 

Proposition 2-2 (reduced maximal solution): The predicate  

         CB
red (xA, xC)  =  (    xB  DB :   CA(xB, xC)  CC(xA, xB)  )    

  xB  DB :   CA(xB, xC)  CC(xA, xB)  )                  (5)      

defines the reduced maximal solution to the equation solving problem.          

          

2.4. Example 

DA = {a1, a2};  DB = {b1, b2, b3};  DC  = {c1, c2, c3, c4};   

RA = {<b1, c1 >, <b2, c2 >, <b1, c3 >, <b2, c3 >, <b3, c3 >};    

RC = {<a1, b1 >, <a2, b2 >, <a1, b3 >}; 

The relation corresponding to the predicate CC(xA, xB) is the complement of RC in 

respect to the set of all tuplets in DA  DB which is sometimes called the “chaos“ over DA 

 DB , written ChaosAB . We have ChaosAB = {<a1, b1 >, <a2, b2 >, <a1, b3 >, <a1, b2 >, 

<a2, b1 >, <a2, b3 >}, where the last three tuplets are not in RC .  

Using Formula (3), we obtain for the set of tuplets accepted by CB
max 

                [ CB
max 

 ] = ChaosAC \ {<ai, cj >  |   bk  <bk, cj >   RA     

<ai, bk >  <a1, b2 >, <a2, b1 >, <a2, b3 >} } 

                               = ChaosAC \ {<a1, c2 >, <a2, c1 >, <a1, c3 >, <a2, c3 >}  

                               = {<a1, c1 >, <a2, c2 >, <a1, c4 >, <a2, c4 >} 

where  “\”  is the set subtraction operator. 

We have [CC
real(xA, xB) ]  = {<a1, b1 >, <a2, b2 >} which is a subset of RC .  

 

We note that the tuplets <a1, c4 > and <a2, c4 > are in [ CB
incomp ] , and therefore they 

are not included in the reduced maximal solution, which is [ CB
red 

 ] =  {<a1, c1 >, <a2, c2 

>} . 
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3. SUBMODULE CONSTRUCTION FOR SYNCHRONOUS SYSTEMS 

3.1. Modeling systems with multiple interfaces  

State machines (with finite or infinite number of states) are often used as models for 

reactive systems that interact with their environment. Often one considers a system model 

which is the composition of several state machines. Therefore a state machine is normally 

a component within a system, it interacts with other components of the system and 

possibly also with the environment of the system; or the state machine represents the 

interactions of the whole system with its environment.  

A system component has one or more interfaces. An interface is a location where 

interactions with the environment of the component take place. Each interface i is 

associated with a domain Ii ; the elements of Ii are the possible interactions that may take 

place at that interface during a given time unit. We write  xi
(t) for the interaction that takes 

place at interface i at time unit t. Clearly, xi
(t)  Ii for all t. We write xi for a sequence of 

interactions at interface i over a certain time period. We write Ii* for the set of all finite 

sequences that can be formed by concatenating interactions from the domain Ii . We have 

xi Ii* . We note that abstract automata are often modeled without the notion of 

interfaces; only input and output interactions are distinguished. However, components in 

embedded systems or distributed systems are often modeled with several interfaces; each 

interaction is associated with one of these interfaces. The different interfaces of a given 

component are usually connected to different components within its environment. 

We assume trace semantics for the specification of the dynamic behaviour of 

components or the system, that is, the dynamic behavior is defined in terms of the set of 

possible execution histories that could occur during the dynamic behavior. For a system 

with n interfaces i (i = 1, …, n), an execution history consists of a tuplet < x1, x2, … , xn > 

where each xi (i = 1, … , n) is the sequence of interactions that occurred at interface i 

during the execution history. We therefore assume that the specification of the dynamic 

behavior of a system M is given in the form of a (normally infinite) set of such tuplets.  

In this section we consider synchronous communication, that is, at each time instant 

considered, there is an interaction at each interface of the system. Therefore we assume in 

the following that the interaction sequences xi at all interfaces have the same length.  

The execution histories of a given behaviour can also be viewed from a language 

perspective. A (formal) language over an alphabet Alph is a subset of the set of sequences 

of elements of A. Considering the alphabet Alph = I1 x I2 x … x In , each execution 

history is a sequence of elements of Alph, and the behaviour of the system, which is a set 

of such sequences, is therefore a language over Alph. We note that the concatenation of 

two execution histories h = < x1, x2, … , xn > and h’ = < x’1, x’2, … , x’n > , written h . h’, 

is defined by the separate concatenation of the interaction sequences at the different 

interfaces, namely h . h’ = < x1 . x’1 ,  x2 . x’2 , … , xn . x’n >.  

Example: As a very simple example, we consider a system component A that has 

two interfaces B and C with possible interactions 0 or 1, that is, IB= IC = {0, 1}. This 

means that at each time instant, the component is involved in two interactions, each with 
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value 0 or 1, and the possible execution histories are of the form h = < x1, x2 > where  x1 

and x2  are sequences of zeros and ones. We will write #(xi) for the number of “1” in a 

sequence xi . Then we may define the behaviour of component A by the predicate CA(xB, 

xC) = ( #(xC) = #(xB) / 3) , where “/” means integer division. This predicate must be 

satisfied for all execution histories; for instance if the number of “1” in xB is 4 then the 

numbers of  “1” in xC must be equal to 1.  

Let us assume that the system consists of a certain number of components (sub-

systems) Cj (j = 1, …, m), each connected to a certain number of interfaces. As in Section 

2, we assume in the following that the dynamic behaviour of the components, and also of 

the overall system, can be characterized by predicates that depend on the observed 

interaction sequences at different interfaces. For instance C1 may be connected to 

interfaces i = 1, 3 and 6, and therefore its behaviour predicate will be of the form C1(x1, 

x3, x6). Similarly the (white-box) behaviour of the overall system can be characterized by 

a predicate of the form C(x1, x2, …, xn) if there are n interfaces. If the system is 

composed out of K components and their behaviour predicates Ck (k = 1, …, K) are 

given, we obtain an overall system behaviour characterized by the predicate C(x1, x2, …, 

xn) = k  (Ck ) , that is, the logical AND over all predicates of the components [Adabi 

1995].  

Besides composition, there is another important operation for describing the 

behaviour of a system consisting of several components. This is the hiding of an interface 

that is not visible from a certain perspective. Let us consider a system configuration 

consisting of several components and n interfaces i (i = 1, …, n). We assume again that 

the dynamic behaviour of the overall system can be characterized by a predicate C(x1, x2, 

…, xn).  When one of the interfaces (say i) is hidden, we obtain a visible behaviour which 

only involves the non-hidden interfaces. We use the notation “hide(syn)
i [C(x1, x2, … , xn)]” 

to represent the execution histories of this behaviour. As discussed by Abadi and Lamport 

[1995], the hiding operation can be defined as follows: 

Definition 3-1 (synchronous hiding operator): The operation of hiding the interactions 

at the interface i from a set of execution sequences [C(x1, x2, … , xn)] leads to the 

following set of execution sequences: 

               hide(syn)
i [C(x1, x2, … , xn)] = { < x1, … , xi-1, xi+1, …, xn >   |                

                           xi  Ii* :  C(x1, … , xi-1, xi, xi+1, …, xn ) } 
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3.2. Submodule construction  

We now consider a system configuration containing two components MA and MB as 

shown in Figure 2(a). Since the sequences at the three interfaces are constrained by the 

behaviour of the two components, we have the following predicate that characterizes the 

set of all possible execution histories of this system:  

 < xA, xB, xC > U :   CA(xB, xC)  CB(xA, xC)   

where U = IA*  IB*  IC* is the universal set of execution sequences for a system 

architecture as shown in Figure 2(a).  

                    

Figure 2: Two components MA and MB; (b) also showing the desired overall behavior MC 

Let us now assume that the system consisting of the composition of the two 

components MA and MB is supposed to behave like a system MC characterized by the 

predicate CC(xA, xB), as shown in Figure 2(b). Then we have the following requirement: 

 < xA, xB, xC >  U :   CA(xB, xC)  CB(xA, xC)  = CC(xA, xB)          

If we suppose that the behavior defined by CC(xA, xB) represents a safety requirement, 

that is, all execution histories generated by the two components MA and MB must satisfy 

CC(xA, xB), then we have the requirement: 

 < xA, xB, xC >  U :   CA(xB, xC)  CB(xA, xC)   CC(xA, xB)    (1syn) 

which is identical to Equation (1) in Section 2. Please note that we assume here that the 

domains Di of Section 2 are sets of interaction sequences,  namely Di  = Ii* (for i = A, B 

and C).  

The problem of equation solving introduced in Section 2 becomes, in the context of 

interacting components, the following “submodule construction problem”: We assume a 

system structure as shown in Figure 2(b). If the specification of MA is given in the form 

of CA(xB, xC), as well as the safety requirement CC(xA, xB) for the overall system, what is 

the most relaxed requirement for the dynamic behaviour of machine MB ? 

Since the equation above is identical to equation (1) of Section 2, we can use the 

solutions provided by Equation (3) or (5) to obtain the most general behaviour of MB that 

satisfies (1syn), or the most general reduced behaviour, respectively. We may rewrite these 

equations, using the hiding operator discussed in Section 3.1, and consider the set of 

execution sequences defined by the equations. We then obtain the following proposition: 



10 

Proposition 3-1: The maximal solution CB
max and the maximal reduced solution CB

red are 

given by the following equations (where ChaosAC is the set of all pairs < xA, xC > in IA* 

 IC*):  

      [ CB
max (xA, xC) ]  = ChaosAC \ hide(syn)

B [ CA(xB, xC)  CC(xA, xB) ]              (3syn)         

      [ CB
red (xA, xC) ]  =  hide(syn)

B [ CA(xB, xC)  CC(xA, xB) ]  

                                     \   hide(syn)
B [ CA(xB, xC)  CC(xA, xB)  ]                          (5syn) 

 

Example: Similar to the example of Section 3.1, we assume that at all three interfaces, 

there are two possible interactions: IA= IB= IC = {0, 1}. We use CA(xB, xC) as defined in 

Section 3.1 and CC(xA, xB) = ( #(xA) = #(xB) / 6 ). To find the condition for the missing 

component B, we can use Formula (2) of Section 2.3 which becomes: 

            CB
max (xA, xC)  =   xB  IB* :   ( #(xC) = #(xB) / 3 )   ( #(xA) = #(xB) / 6 ) 

which implies CB
max (xA, xC) = ( #(xA) = #(xC) / 2 ). 

 

3.3. Prefix closure 

A language (or set of execution histories) is prefix-closed if for each sequence included in 

the language, all its prefixes are also included in that language. This is an important 

concept since the set of execution sequences of a system starting from its initial state has 

this property. In fact, the execution history that led the system from the initial state to its 

current state is a prefix for all execution sequences that may be pursued from the current 

state. We note, however, that sometimes only “complete” traces are considered as valid 

execution histories, which are traces that lead to some valid final state; in this case the set 

of “complete” execution histories is not prefix-closed.  

Let us assume that the system has performed synchronous interactions over t time 

units and the execution history h = < x1, x2, …, xn >  has been observed, as explained in 

Section 3.1. Now we ask the question: What could be the interactions xi
(t+1) at the 

interfaces (i = 1, …, n) during the next time unit (t+1). These interactions must satisfy the 

conditions Ck(…) of all components k (k = 1, …, N) that are involved in the composition. 

Since h is a valid trace, the x1, x2, … xn satisfy all conditions Ck(…). The next interactions 

x1
(t+1), x2

(t+1), … , x n
 (t+1) must be chosen such that the extended execution history h’ = < x1 

. x1
(t+1),  x2 . x2

(t+1), … , xn . x n
 (t+1) > also satisfies all conditions Ck(…). We note that this 

means that there is a kind of global rendezvous between all the components to agree on 

the interactions xi
(t+1) at all interfaces such that they are valid for all components.  

We note that the definition of this kind of synchronous rendezvous that occurs 

simultaneously at several interfaces is a concept that would be difficult to implement in a 

distributed environment. It is not clear whether this is a concept of practical importance, 

however, we think that it exhibits a theoretical simplicity which makes it interesting. We 

note that the issues discussed for this kind of synchronous communication carry over to 

the more practical communication paradigms discussed in the subsequent sections. 
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3.4. The case of regular behaviors 

The behaviour of a component is often modeled by a state machine. If the state machine 

model has a finite number of states, the set of possible execution histories is a language 

which can be defined by a regular expression. Therefore such behaviors are called 

regular. We note that state machines are just a convenient way of defining certain types 

of behaviors. It is clear that the set of execution sequences defined by a state machine 

could also be described by a characterizing predicate, as we assumed in the preceeding 

sections. 

One distinguishes different types of state machines depending on the nature of the 

interactions with the environment, such as accepting automata, finite state machines 

where an input is followed by an output within a single transition, and Input/Output 

Automata (IOA) [Lynch 1989] or Input-Output Transition Systems (IOTS) [Tretmans 

1996] where inputs and outputs are realized through separate transitions. For the 

synchronous rendezvous communication considered within this section, we consider 

accepting automata as a model of the component behaviour.  

An accepting automata has a finite number of states and transitions between these 

states which are labelled by an element of the interaction alphabet Alph (as defined in 

Section 3.1) which is a tuplet of interactions taking place at the different interfaces. A 

subset of the states are usually considered accepting states, which means that an 

execution history that leads to one of these states is accepted by the automaton, that is, it 

represents valid behavior. In the following, we often deal with prefix-closed behaviors 

which can be modeled as automata for which all states are accepting. 

An example behaviour definition is shown in Figure 3(a). It represents the behaviour 

of the module MC of Figure 2(b) and each transition is labelled with the two interactions 

that take place at the two interfaces IA and IB . For instance, in the initial state, there is 

only one possible transition with interactions a1 at IA and b1 at IB . In state 2, two 

transitions are enabled, both having interaction a2 at interface IA .  

One advantage of this modeling approach is the fact that operations on behaviour 

definitions can be performed by simple algorithms (see for instance [Aho et al. 1986]). 

We consider in particular: 

 Completing the behaviour model, that is, there should be a transition for all 

combinations of interactions in each state. This model can be obtained by adding 

a (non-acccepting) Fail state and a new transition to this state from each state of 

the automaton for those combinations of interactions for which there is no 

transitions in the original model. As an example, Figure 3(c) shows a completed 

version of the behavior of Figure 3(a). 

 Finding an equivalent deterministic model, assuming that the given automaton is 

non-deterministic. A state s in the equivalent deterministic model represents the 

set of states in which the original model could be after having participated in the 

execution sequence that leads to the state s (see [Aho et al. 1986] for more 
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details). Unfortunately, this operation has a worst-case algorithmic complexity 

that is exponential in the number of states in the original model.  

 Complement of a behaviour. This corresponds to all execution histories that are 

invalid for the given behaviour, e.g. the complement of [CA(xB, xC)] is (IB* 

IC*)  \  [CA(xB, xC)]. For a deterministic completely defined automaton, it is 

sufficient to exchange accepting and non-accepting states. If the given 

automaton is non-deterministic, it must first be converted into an equivalent 

deterministic one (see above). 

 Product of two behaviors, e.g.  CA(xB, xC) and CB(xA, xC), where the interactions 

at the shared interfaces, e.g. IC , must be the same. This corresponds to the logic 

expression CA(xB, xC)  CB(xA, xC). The algorithm for constructing the product 

is very simple: The states of the product are of the form <sA, sB > and the 

product has a transition from <sA, sB > to <s’A, s’B > labelled (xA, xB, xC)  iff 

CA(xB, xC) has a transition labelled (xB, xC) from  sA to s’A and CB(xA, xC) has a 

transition labelled (xA, xC) from  sB to s’B .  A product state is accepting if the 

states of both behaviours are accepting. 

 Hiding an interface (as defined in Section 3.1): This operation can be performed 

by deleting the interaction of that interface in the labels of all transitions. Note 

that in general a non-deterministic automaton is obtained. In the case of 

interleaving semantics (see Section 4), when there is a non-null interaction on at 

most one interface at a given time, one usually replaces the non-null interactions 

at the hidden interface by a symbol, e.g. “i”, representing an internal event.  

Using these operations, the equations (3syn) and (5syn) can be evaluated algorithmically. 

We discuss in the following an algorithm to determine the reduced maximal solution 

using equation (5syn). We assume that both behaviors, CA(xB, xC) and CC(xA, xB) are 

prefix-closed and given in the form of two automata. The following algorithm is 

proposed: 

Algorithm 3-1 (to find the reduced maximal solution):  

Step 1: Build the completed model of  CC(xA, xB) by introducing a (non-accepting) Fail 

state and the transitions leading to it. 

Step 2: Construct the product automaton  CA(xB, xC) x CC(xA, xB). In this automaton, 

each transition will be labelled with a tuplet <xA, xB, xC >, and each state has the form 

<sA, sC > where sA is a state of CA(xB, xC) and sC is a state of CC(xA, xB). 

Step 3: For this product automaton, hide the interactions at the interface IB .  

Step 4: Find an deterministic automaton equivalent to the one obtained in Step 3. In this 

resulting automaton, each state represents a set of states of the product automaton, that is, 

a set of pairs <sA, sC >.  

Step 5: For the automaton obtained in Step 4, designate as non-accepting each state 

which includes a state pair <sA, sC > for which sC = Fail. (The accepting status of the 

other states are not changed). The resulting automaton, which we call B1, represents the 

reduced maximal solution CB
red (xA, xC).  
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To understand the significance of the solution B1, it is important to note the following 

points: 

 The interaction sequences allowed by B1 are exactly those that are compatible 

with A. Other sequences could not be executed by the component B jointly with 

A because A would block them.   

 The state reached by B1 after a given execution sequence represents exactly the 

set of state pairs in which the components A and C could be when they would 

execute jointly communicating over the interface IB (without the presence of B) 

generating at the interfaces IA and IC the given execution sequence. (Note that 

the interface IB is not visible by B). 

Proposition 3-2: Algorithm 3-1 finds the maximal reduced solution as defined by 

Equation (5syn). 

Proof: It is clear that Steps 1 through 4 lead to an automaton that represents the 

behaviour of the first line of Equation (5syn). Note that a state of the obtained 

deterministic automaton is accepting if one of the corresponding state pairs <sA, sC > is 

accepting, that is, both sA and sC are accepting. To construct an automaton that represents 

the behaviour of the second line of Equation (5syn), one would proceed through the same 

steps, except that after Step 1, a complement must be performed (which leads to an 

exchange of accepting and non-accepting states), and after Step 4, another complement 

must be performed. For this purpose, one would normally first complete the obtained 

automaton (by introducing a new fail state, say F1), and then exchange accepting and 

non-accepting states. Because the accepting and non-accepting states are exchanged 

twice, this would lead to the same automaton which was obtained by Steps 1 through 4 

except that the states that have a corresponding state pair <sA, Fail> are non-accepting.  

Since the acceptance conditions for the first line and the second line must be satisfied, 

Step 5 is introduced. Note that the transitions to the new fail state F1 have no impact on 

the result because they are in conflict with the behaviour of CA(xB, xC). � 

As an example, we consider the behaviour CC(xA, xB) defined by the transition 

diagram of Figure 3(a) and the behaviour CA(xB, xC) shown in Figure 3(b). The following 

figures show the results of the different steps during the derivation of the behaviour of 

CB
red (xA, xC) according to Formula (5syn) and Algorithm 3-1. The completion of CC(xA, 

xB) is shown in Figure 3(c) – that is, there is a transition for each interaction tuplet from 

each state, with the addition of a non-accepting Fail state - and the complement is shown 

in Figure 3(d) – obtained by interchanging accepting and non-accepting states. Figure 

3(e) shows the product of this complement with CA(xB, xC), and Figure 3(f) shows it after 

hiding the interactions at the IB interface. Finally, Figure 3(g) shows the reduced maximal 

solution CB
red, obtained from Figure 3(f) after determinization and exchange of accepting 

and non-accepting states. We note that the maximal solution CB
max is similar, it includes 

additional transitions indicated in the figure as arrows that do not lead to any state; these 

transitions will never be executed in the context of the architecture of Figure 2(b). To 
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check the correctness of the solution, we show in Figure 3(h) the composition of the 

given component A with the solution of Figure 3(g); which after hiding the interactions at 

the interface IC becomes as shown in Figure 3(i). As mentioned earlier, the additional 

transitions in CB
max do not contribute to this joint behaviour. One notes that the states (1, 

(1,1)) and (1, (2,2 or 1.1)), as well as (2, (2,2)) and (2, (2,2 or 1,1)), are equivalent; 

therefore this composition is equivalent to the behaviour of CC, as defined in Figure 3(a), 

which means that the solution is complete (and it is also progressive – see below). This is 

a quite trivial example; we note that the behaviour of Figure 3(j) is also a progressive 

solution to the equation; it is larger than CB
red , but not maximal – its advantage is its 

simplicity. Notation: In a product, a state name (1,1) means that both components are in 

state 1; (F,*) means that the first component is in the Fail state and the other component 

in any state; in the determinized product after hiding, the state name ((2,2),(1,1)) means 

that the two components are either in the states (2,2) or in (1,1). The non-accepting states 

are indicated by a dashed rectangle. 
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Figure 3: Simple example of submodule construction for synchronous machines. The 

alphabets at the interfaces are: IA={a1, a2}, IB={b1, b2},  IC={c1, c2}:  (a) behaviour CC(xA, 

xB); (b) behaviour CA(xB, xC); (c) completed behaviour description for CC (xA, xB); (d) shows 

the complement of (c); (e) shows the product of (d) with (b); (f) behaviour of (e) with 

hidden interactions at interface IB; (g) behaviour of  CB
red obtained from (f) after 

determinization and exchanging accepting states; (h) composition of CB
red with CA(xB, xC); 

(i) behaviour (h) with interface IC hidden; (j) another solution of the submodule construction 

problem.  
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A more interesting example is shown in Figure 4. Figures 4(a) and (b) show the 

behaviour of C and A, respectively. In Figures 4(a), (c) and (d), the non-accepting states 

(including Fail) are not shown; instead the labels of transitions leading into such states 

are written next to their starting states. Figure 4(c) shows the product C x A, and the 

solution (its determinization after hiding the bx interactions) is shown in Figure 4(d). 

Finally, the combined behaviour of A with the solution is shown in Figure 4(e). By 

looking at this figure, we see that the realized subset of C (as defined in Section 2.4) is 

not equal to C, which implies that the solution is not complete. In fact, the transition 

(a2,b1) from state 2 in Figure 4(a) is never executed by the behaviour of Figure 4(e); the 

transition (a1,b2) from state 1 is not executable from the initial state of Figure 4(e); and 

the transition (a1,b1) from state 2 can only be executed three times in a row. However, 

there are no deadlocks.  
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Figure 4: Another example with synchronous communication; (a) behaviour of C; (b) 

behaviour of A; (c) product C x A; (d) solution; (e) product A x solution (see explanations 

in the text) 

 

 

3.5. Prefix-closed solutions 

It is important to note that the complement of a prefix-closed language is not prefix-

closed. Therefore the solution obtained according to Formulas (3syn) or (5syn) are, in 

general, languages that are not prefix-closed, even if the specifications of CC(xA, xB) and 

CA(xB, xC) are prefix-closed, as demonstrated by the example shown in Figure 5.  

This example is a modification from Figure 3. The behaviour of C is the same while 

a new state 5 has been added to A, as shown in Figure 5(a) (the new state and transitions 

are shown in bold). Figure 5(b) shows the product C x A, and the solution is shown in 

Figure 5(c). We see that all transitions from the initial state of the solution lead C into the 
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Fail state. Therefore the prefix-closed solution is the empty sequence (B blocks in the 

initial state). However, there exist solution execution histories with longer length. For 

example, when B has executed the sequence (a1, c1), (a2, c2), the component A will be in 

state 1 or 2 and the behaviour at the interfaces IA and IB corresponds to the state 1 or 2 of 

C; this is a solution sequence (since C is in an accepting state), however, it is not prefix-

closed since the prefix (a1, c1) is not a solution.  
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Figure 5: Submodule construction with a solution that is not prefix-closed; (a) behaviour of 

A; (b) product C x A; (c) solution 

 

In order to obtain a prefix-closed solution to the submodule construction problem, the 

following Step 6 can be applied to B1 which was obtained by Steps 1 through 5 of 

Algorithm 3-1: 

Algorithm 3-2 (for prefix-closed state pruning): 

Step 6: Identify all states in B1 that include, in the set of their corresponding state pairs, a 

pair (sA, Fail) for some sA. Prune all transitions leading to these states, using the 

following algorithm for pruning transitions. We call the resulting solution B2 . 

Algorithm 3-3 (for pruning transitions - rendezvous  communication): 

Input: a set of transitions of the solution state machine B (to be eliminated).  

Step (a): Delete the set of transitions from the state machine B. (Note: for input-output 

communication, this procedure is more complicated – see Section 5.2.1) 

Step (b): Delete any state from the state machine B that is not any more accessible from 

the initial state. Also delete any outgoing transitions from these states. 

Proposition 3-3: Algorithm 3-1 followed by Algorithm 3-2 finds the maximal reduced 

prefix-closed solution for the submodule construction problem for synchronous 

rendezvous communication.  

Proof: In the case of a prefix-closed solution, all states reached by one of the execution 

sequences must be accepting. Since the states of B1 that are associated with a state pair 

(sA, Fail) are non-accepting, any execution sequence that leads to such a state must be 

eliminated. This is what Algorithm 3-2 does. The pruning Algorithm 3-3 is 

straightforward in this case of synchronous communication; it eliminates the transitions 

leading to the non-accepting states in Step (a), while Step (b) simply eliminates the states 

that have become non-accessible, which does not change the behavior. � 
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3.6. Deadlocks and progressiveness 

We note that the behaviors obtained for the component B according to the algorithms 

above often include deadlocks or dead ends with loops. Such parts of the behavior should 

normally be eliminated. However, this usually leads to a reduction of the realized subset 

of the global behavior C.  As an example, Figure 6(a) shows the reduced maximal 

solution for the case that component A is defined as in Figure 4(b) and the desired global 

behavior C is as shown in Figure 4(a), except that the transition (a1, b1) from state 2 is 

deleted. The solution shows a dead end at the state (1,2 or 2,4), which leads to a deadlock 

in the product machine A x B, as shown in Figure 6(b). Therefore one would delete the 

state (1,2 or 2,4)  together with the transition leading to it. This would result in a realized 

global behavior C as shown in Figure 6(b) without the two states on the right. This 

behavior has no deadlock and is a subset of the desired behavior shown in Figure 4(a).  
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           (a)                                                            (b)                                       

Figure 6: Example of deadlocks: (a) solution with dead-end loop; (b) deadlock in the 

product of A with the solution (a) – see explanations in text. 

Algorithm 3-4 (for eliminating deadlocks in the realized global behavior): 

The input to this algorithm is the prefix-closed solution B2 and the state machine of 

component A. 

Step 7:  Set B3 := B2 

Step 8: Construct the product machine P = A x B3. This machine represents the realized 

global behavior. Note that each state of P is a pair (a state sA, a set of state pairs <s’A, s’C 

>), where the state sA must be equal to one of the states s’A ; and each transition of P is 

labelled by a tuple (iA, iB, iC). 

Step 9: “Prune” each state s in P that deadlocks, that is, has no outgoing transition. By 

“pruning a state in P” we mean to make the necessary changes to B3 such that this state 

cannot be reached any more (since we can only prune states or transitions in B, but not 

directly in the product machine P). Therefore, in order to “prune” a state s = (sA, {<s’A, 

s’C >} ) in P, we prune all those transitions of B3 that participate in a joint transition of A 

x B3 into this state s. We use Algorithm 3-3 for this purpose. 

Step 10: If the initial state has been deleted, then there is no solution. Otherwise, if some 

transitions were deleted, go back to Step 8. If no transitions were deleted in the last step 

then B3 is the largest solution without deadlock. 

Proposition 3-4: Algorithm 3-1 followed by Algorithms 3-2 and 3-4 find the maximal 

reduced prefix-closed solution that does not lead to any deadlock when executed jointly 

with the given component A.  
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Proof: Algorithm 3-4 is in some sense “experimental”: The product behaviour of the 

given component A with the solution is formed, and if a deadlock state of this product is 

detected, the transitions of the solution by which the product could enter this state are 

eliminated. This process is repeated until no deadlock is encountered. The resulting 

solution is maximal since only those transitions of the solution are eliminated that 

actually lead to a deadlock state of the product. � 

 

We note that one may also eliminate deadlocks in two phases, first eliminating 

deadlocks in the solution B2 , and then eliminate the deadlocks that may still show up in 

the realized global behavior P, using the algorithm above.  

We see from the above examples that it is very common that the desired behavior C 

is only partially realized with the given component A. In the case of synchronous 

communication, a minimum solution always exists which is a component B that blocks in 

its initial state. In other situations, all defined execution histories of C are realized, but 

this does not necessarily mean that no deadlock may occur in the realized behavior.  

There is a more subtle property of non-blocking based on refusal semantics [Hoare 

1985], sometimes called progressiveness. We recall that the product machine P, 

determined in Step 8 above, represents the realized global behavior. We discussed above 

how one can eliminate blocking situations (deadlocks) in this behavior. We note, 

however, that a realized behavior that is complete (realizes all traces of C) and has no 

deadlock does not necessarily have the same blocking properties as the specification C. 

This is due to possible non-determinism. If we want to compare P with the state machine 

of C, we first have to hide the interactions at the IC interface, and this may lead to non-

determinism. Assuming for instance that the behavior of C is defined by Figure 3(a); it 

could be that the joint behavior of A and the solution would have two alternative 

branches for getting into a state corresponding to state 2 of Figure 3(a); and going 

through one of these branches, the self-loop transition (a2, b1) of Figure 3(a) would not be 

possible. This would represent a refusal of the next transition (a2, b1) which is however 

foreseen by the behavior C.  

Definition (progressive solution): A solution to the submodule construction problem is 

progressive if the realized behavior, in any reached state, can perform all transitions that 

are specified by the desired behavior C in its corresponding state. (Note that C is assumed 

to be deterministic). 

We propose the following  algorithm for obtaining a (complete) progressive solution, 

if it exists.  

Algorithm 3-5 (progressive solution): The algorithm uses the four steps (7) through 

(10) of Algorithm 3-4 for deadlock removal, but Step (9) is replaced by the following. 

(Note: See explanation in Step 8 of Algorithm 3-4 concerning the form of the states of P 

and the labels of its transitions)  

Step 9: For each state s = (sA, {<s’A, s’C >} ) in P do the following: 
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For each pair <s’A, s’C >, and for each outgoing transition from s’C in C 

determine the label (iA, iB) of that transition and check that P has a transition 

from the state s which is labeled (iA, iB, iC) for some iC . If this condition is not 

satisfied, “prune” this state as explained in Step 9 of Algorithm 3-4.  

 

We note that it is sometimes useful to distinguish between required traces and 

optional traces in the behavior specification of a component [Drissi 1999]. In the above, 

we have assumed that all traces of C are required. The notion of progressiveness can only 

be applied to required traces. 

 

 

4. SUBMODULE CONSTRUCTION FOR INTERLEAVING SEMANTICS 

4.1. Modeling interleaving semantics 

In this modeling framework, we also have rendezvous interactions at interfaces, but 

interleaving semantics is assumed, which means that at most one interaction (on a single 

interface) may occur during each time unit. We use in the following the same modelling 

framework used for synchronous machines, but introduce the following changes: 

(a) We allow an interface to have the value null during a given time unit, which 

means that no interaction takes place at this interface during this time unit. We 

write  xi
(t)  ( Ii   {null} ). 

(b) In a system of several components with n interfaces, a possible execution history 

< x1, x2, … , xn > must satisfy the following constraint IC, called interleaving 

constraint: 

                       IC(x1, x2, … , xn ) = for all t : xi
(t)  Ii implies xj

(t) null for all j i. 

Any execution history h = < x1, x2, … , xn > that satisfies the interleaving constraint 

defines a linear (time) order for the (non-null) interactions at the interfaces. We write 

seq(h) for this sequence and call it the execution sequence corresponding to h. For 

execution sequences over n interfaces, as above, we have seq(h) 1 2 …n )* . 

Normally, the semantics of labelled transition systems is described in terms of these 

(finite or infinite) execution sequences and the possibilities of blocking after finite 

sequences. We will continue using the model of separate interaction sequences xi at the 

different interfaces, as introduced for synchronous communication; we thus obtain a 

uniform framework for treating systems with both types of communication, synchronous 

and interleaving. 

Definition 4-1 (equivalence of execution histories): Since only the execution sequences 

count for the semantics of labelled transition systems, we say that two execution 

sequences h1 and h2 are equivalent, written h1  h2 , if they define the same execution 

sequence, that is, seq(h1) = seq(h2).   

This corresponds to the so-called stuttering equivalence between execution 

sequences that contain at certain time units null-interactions at all interfaces. Clearly, we 

assume that any predicate defining the behaviour of a given system component has the 
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same value for equivalent execution histories; the value should only depend on the 

corresponding execution sequence. 

The notion of equivalence between execution histories leads to a slightly modified 

definition of the hiding operator as follows: 

Definition 4-2 (interleaving hiding operator): The operation of hiding the interactions 

at the interface i from a set of execution sequences [C(x1, x2, … , xn)] leads to the 

following set of execution sequences: 

        hide(LTS) 
i [C(x1, x2, … , xn) ] =  { < x1, …, xi-1, xi+1, …, xn >   |                

                    IC(x1, … , xi-1, xi+1, …, xn) 

                     < x1’, … , xi-1’, xi’, xi+1’, …, xn’ > :  ( IC(x1’, … , xi-1’, xi’, xi+1’, …, xn’) 

 < x1’, … , xi-1’, xi’, xi+1’, …, xn’ >  C(x1, x2, … , xn)]  ) 

                                  < x1’, … , xi-1’, xi+1’, …, xn’ >    < x1, … , xi-1, xi+1, …, xn >   } 

 

This definition is more complex than Definition 3-1 for synchronous communication 

because equivalent execution sequences are not always of the same length (e.g. when one 

or both include time instants where the interactions at all interfaces are null). Therefore 

an execution sequence <x1, …, xn> of the hidden behaviour may be shorter than any of 

the original sequences that include the interface i. The sequences <x1’, …, xn’> represent 

those sequences of different length to which the sequence < x1, …, xn > may correspond.  

4.2. Submodule construction 

Due to the interleaving constraints and the equivalence between execution histories, we 

have the following modified equations. Equation (1syn) becomes: 

 < xA, xB, xC >  U :  

                          IC(xA, xB, xC)  CA(xB, xC)  CB(xA, xC) CC(xA, xB)                 (1LTS) 

Equation (2) becomes: 

               CB
max(xA, xC)  = IC(xA, xC)    < xA’, xB’, xC’ >  U :  

                                         IC(xA’, xB’, xC’)        CA(xB’, xC’) CC(xA’, xB’)      

                                              <xA’, xC’>  <xA, xC>                                  (2LTS) 

This definition of CB
max says that an execution history at the interfaces IA and IC is an 

allowed behavior for component MB if for all global execution histories < xA’, xB’, xC’ > 

that have an equivalent behavior for MB, the satisfaction of CA leads to the satisfaction of 

CC . This modification to Equation (2) is introduced because the specification of the 

behavior for MB can only restrain the possible execution sequences of the component, but 

has no impact on which of the equivalent execution histories would be realized in 

collaboration with the other system components and the environment. 

Using a similar derivation as for Equations (3) in Section 2, it is easy to see that 

Equation (2LTS) is equivalent to 

              CB
max(xA, xC)  =  IC(xA, xC)     < xA’, xB’, xC’ >  U :  

                       IC(xA’, xB’, xC’)   CA(xB’, xC’)  CC(xA’, xB’)   <xA’, xC’>  <xA, xC>   
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Using the definition of the hiding operator given above, this leads to the following 

proposition: 

Proposition 4-1: The maximal solution CB
max and the maximal reduced solution CB

red for 

the submodule construction problem with interleaved communication are given by the 

following equations: 

      [ CB
max (xA, xC) ]  = [ IC(xA, xC) ]  ∩  hide(as)

B [ CA(xB, xC)  CC(xA, xB) ]    (3LTS) 

      [ CB
red (xA, xC) ]  =  hide(LTS)

B [ CA(xB, xC)  CC(xA, xB) ]  

\   hide(LTS)
B [ CA(xB, xC)  CC(xA, xB)  ]                       (5LTS) 

Equation (5LTS) was presented (using a different notation) by Bochmann and Merlin 

[1980], which was the first paper on submodule construction to our knowledge. We note 

that this formula is the same as (5 syn), except that a different hiding operator is used. 

Like in the case of synchronous machines, these solutions may be evaluated 

algorithmically when the specifications of CA and CC are given in the form of regular 

languages (finite state machines – labelled transition systems). Since Equation (5LTS)  has 

the same form as Equation (5 syn), Algorithm 3-1 can be used for obtaining a reduced 

maximal solution, however, the different hiding operator hide(LTS) must be used in Step 3, 

and the algorithm for obtaining the product of two machine behaviors is different (see 

[Aho 1986]). For instance, the transitions of the product machine C x A are not labeled 

with triplets (iA, iB, iC), but by single interactions iA, iB, or iC.. The issues of prefix-

closure, deadlocks, and progressiveness are the same as for synchronous systems.  

Algorithms 3-2 and 3-3 for obtaining a prefix-closed solution can also be applied for 

specifications with interleaving semantics. We note, however, that in contrast to the case 

of synchronous communication, we may find a solution state machine for which the 

initial state is not accepting. In this case, there is no prefix-closed solution, not even a 

minimal all-blocking one. This situation could occur when component A starts with an 

interaction iB that is not allowed in the initial state of C. 

Algorithm 3-4 for finding a deadlock-free solution can be used in the context of 

interleaved communications, however in Step 9, the sentence “we prune all those 

transitions of B3 that participate in a joint transition of A x B3 into this state s” must be 

replaced by “for all transition paths of A x B3 that lead into the state s, we prune in B3 the 

transition that is the last transition of B3 involved on that path”. Note that in interleaving 

semantics, some transitions of A x B3 may only involve component A.  

The Algorithm 3-5 for finding a progressive solution must also be adapted since, for 

interleaving semantics, an interaction required by the behavior CC may not be enabled 

immediately when the last interaction of CC just occurred. This is so because some 

interactions at the interface IC (between the two components) may be required before the 

next interaction of CC can occur, while that interface is not visible from the perspective of 

CC . We propose the following algorithm for finding a progressive solution. 

Algorithm 4-1 (progressive solution – interleaving communication): The algorithm 

uses the four steps (7) through (10) of Algorithm 3-4 for deadlock removal, but Step (9) 
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is replaced by the following. (Note: See explanation in Step 8 of Algorithm 3-4 

concerning the form of the states of P)  

Step 9: For each state s = (sA, {<s’A, s’C >} ) in P do the following: 

For each pair <s’A, s’C >, and for each outgoing transition from s’C in C 

determine the label iA or iB of that transition and verify that there is a sequence 

of transitions from state s in P with interactions at interface I C and leading to a 

state s’ in P from which a transition labeled iA or iB , respectively, is enabled. If 

for some state s this condition is not satisfied, “prune” this state as explained in 

Step 9 of Algorithm 3-4.  

We note that this algorithm does not check for livelocks (infinite loops) involving 

only interactions at the interface IC, which may prevent any progress at the other 

interfaces. The problem of progressiveness is discussed in [Buffalov 2003] in a more 

general context. 

 

4.3. Example 

An example is shown in Figure 7. State diagrams representing the behaviour of C and A 

are shown in Figures 7(a) and (b). The behaviour of the product C x A  is shown in 

Figure 7(c). Figure 7(d) shows the reduced maximal solution which is obtained from 

Figure 7(c) after the following two steps: (a) hiding the interactions b1 and b2 at the 

interface IB , and (b) transforming the resulting non-deterministic machine into an 

equivalent deterministic one. We note that the states (2,1) and (3,1) become invalid states 

after hiding the b-interactions, since they have a spontaneous transition (previously 

labelled b1 or b2) which leads C into the Fail state. Such states, together with transitions 

leading to them, must be pruned (see Step 5 in Algorithm 3-1). 
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Figure 7: (a), (b) State diagrams representing the behavior of C and A;   (c) behavior of the 

composition C x A; (d) the same after hiding interactions b1 and b2 and determination. 

As discussed in Section 3.5 for synchronous systems, the obtained solution may 

contain deadlocks, or may lead to deadlocks in the realized global behavior. The same 

problems occur with interleaving semantics; and the same remediation is proposed: 

pruning certain transitions of the behaviour of the solution (assuming that the 

specifications of C and A cannot be changed). If we do this in two phases, we first 
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eliminate the deadlocked states in the solution, namely (2,4 or 3,4) in Figure 7(d) by 

eliminating the transition c3 leading to it. In the second phase, we check for deadlocks in 

the realized global behaviour. In our example, the execution sequence (b2, c4) leads to a 

deadlock. Following Algorithm 3-4 for eliminating deadlocks, we would delete the 

transition c4 from the initial state of the solution and therefore also the state (2,5 or 3,4) 

with its outgoing transition. This leads to the maximal deadlock-free solution. 

.   

 

 

5. EQUATION SOLVING FOR BEHAVIOR SPECIFICATIONS WITH INPUTS 
AND OUTPUTS 

5.1. Component specifications based on assumptions and guarantees 

In Sections 3 and 4, we considered rendezvous communication between the different 

system components. In that case, an interaction can only occur on a given interface when 

all components connected to that interface are ready, and the execution of that interaction 

involves the execution of a corresponding transition in each component. In the case of 

automata with inputs and outputs (without message queuing), the execution of an 

interaction on a given interface also involves simultaneous transitions in each of the 

connected components, however, the distinction of input and output implies that the 

interaction is an output produced by one component, and it is input to all other connected 

components. The outputting component alone may select the interaction to be executed. 

We do not consider queued interactions in this paper. In order to avoid competition for 

output at a given interface between several components, we assume that each interface 

represents output for exactly one component and input for all other connected 

components. An example is shown in Figure 8(a). 

In the case of synchronous communication, an output is produced at each interface 

during each time unit. In the case of interleaved communication (which is the case for 

traditional IOA [Lynch et al. 1989] and IOTS [Tretmans 1996]), the outputting 

components (and the environment) may compete for triggering the next interaction by 

their respective output within the interleaving semantics. It appears that input and output 

interactions correspond, in the context of discrete event systems for controller design 

[Ramage et al. 1989] to what is called “uncontrollable” and “controllable” interactions, 

respectively.  

Since a given component has no control over which input will occur at its interfaces, 

there are two schools of specification. Often so-called “completed” specifications are 

considered; they contain, for each state, transitions for all possible inputs. A more 

realistic approach is to use so-called “partial” specifications which, for certain states, may 

not include transitions for all possible inputs; it is assumed that such “non-specified” 

inputs will not occur when the component is in the state in question. Partial specification 

is a paradigm where the specification of a component contains two parts: (1) the 

assumptions about the inputs received from the component’s environment (what are the 
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valid inputs ?), and (2) the guarantees about the outputs that will be produced by the 

component (what outputs may be produced by the component ?).  

Using this paradigm (see for instance [Abadi et al. 1995, Misra et al. 1991]), the 

specification of the requirements for a given component M includes two parts: (1) The 

assumption CM
Ass about the behavior of the environment that the implementation of the 

component may assume, and (2) the guarantees CM
Guar that the implementation of the 

component must ensure. The specification CM of the component then has the form 

                                                   CM = CM
Ass  CM

Guar 

which means that the guarantees are provided if the assumptions hold. 
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Figure 8: (a) two communicating system components with separate input and output 

interfaces; (b) and (c) – two different input-output relationships 

Since two interacting components, as shown in Figure 8(a), may make assumptions 

about one another, one needs a method for deriving the global behavior of the 

composition without circular reasoning. In the case of prefix-closed behaviors, this can be 

done by using induction over the length of the execution histories (or sequences) [Adabi 

1995]. Let us assume that for an execution history up to time t, the assumptions of all 

components have been satisfied. Then the guarantees for each component will indicate 

the possible outputs that may occur at the next time instant. Based on this information, 

one can then verify whether the assumptions still holds at the next time instant.  

For synchronous systems, this reasoning only goes through if we assume that the 

outputs allowed at time t do not depend on the inputs received at the same time unit (but 

only on previous inputs and outputs). This implies that a delay of at least one time unit 

exists between a received input and the output which is caused by this input. The 

importance of this assumption is discussed in [Adabi 1995, Broy 1995]. We make the 

additional assumption that the question of whether a given input is valid after a given 

execution history (assumption) is independent of the output that will be produced by the 

component during the same time unit. We call this the unit delay assumption 

[Bochmann 2002b]. 

 

5.2. Submodule construction 

We consider here the following cases:  

1. Synchronous behaviors with complete specifications: Each state transition is 

associated with one interaction at each interface, which may be input or output 

depending on the nature of the interface. A complete behavior specification 

means that in each state of the state machine there is a transition for each 

combination of input values. This means that the behavior specification includes 
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no assumptions. This case is sometimes called synchronous composition of 

finite state machines (FSM) (see for instance [Yevtushenko et al. 2000]).  

2. Synchronous behaviors with partial specifications (see below)   

3. Interleaving behavior with completely defined specifications: Similar as in 

case (1) above, the complete specification implies that there is in each state an 

input transition for each input interaction. No assumption is made about the 

environment.  

4. Partially defined interleaving behavior  (see below)   

5. Completely specified FSM with interleaved communication (so-called 

parallel composition): An FSM (where each transition has an input and an 

output) may be modeled by an IOA by assuming that each input transition of the 

IOA is followed by an output transition, and that no new input will be applied 

before the output has occurred. This alternative occurrence of inputs and outputs 

can be modeled by IOA behavior guarantees and assumptions (see case (4) 

above). Because of the completely specified input assumption, however, the 

detailed treatment is similar to case (3). For more details, see [Petrenko et al. 

1998] and [Yevtuschenko et al. 2000]. 

The cases of completely defined behavior are very similar to what is discussed in 

Sections 3 and 4. The only difference is that a distinction between input and output 

interactions must be made. However, this does not impact the equations and algorithms 

for submodule construction discussed in Sections 3 and 4. But the algorithm for transition 

pruning must be changed, because inputs to component B are not controllable and the 

corresponding transitions cannot be simply eliminated as in the case of rendezvous 

communication. See below for more details. 

 

 

5.2.1. Synchronous automata with partial behavior specifications 

In this case, the automata may not have a transition from some given state for some given 

combination of inputs received. This means that the assumption is made that such a 

combination will not occur when the component is in the given state. For submodule 

construction, Equations  (1syn), (3syn) and (5syn) can be applied here, and we get the 

following proposition: 

Proposition 5-1: The maximal reduced solution CB
red for the submodule construction 

problem for synchronous communication with inputs and outputs is given by the 

following equation, where the given behavior predicates Ci (for i = A or C) have the form 

Ci = Ci
Ass Ci

Guar: 

    [ CB(xA, xC) ] = hide(syn)
B [ CA(xB, xC)  CC(xA, xB)  ]    \ hide(syn)

B [  

         (CA
Ass(xB, xC) CA

Guar(xB, xC) )( CC
Ass(xA, xB)  CC

Guar(xA, xB) )   ]   (5synP-IOA) 

 

Equation (5synP-IOA) introduces an additional requirement on the behavior of the 

solution, namely, that the output produced towards the component A does not violate the 
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assumptions CA
Ass(xB, xC) made by this component concerning received inputs. In the 

case of prefix-closed regular behaviors, this requirement can be satisfied by introducing 

another step in Algorithm 3-1. The idea is to eliminate from the solution B1 (obtained in 

Step 5) all transitions whose output may violate the assumptions of component A. Since 

each state of the solution B1 represents a set of state pairs of the form (sC, sA), the 

machine B1 “knows” in which state the component A may be. We write sB = {<s’A, s’C >}   

for a state sB of B where the <s’A, s’C > are the associated state pairs (see Step 4 of 

Algorithm 3-1). Therefore, the following algorithm should be performed after Step 5 of 

Algorithm 3-1:  

Algorithm 5-1 (for avoiding non-specified inputs for component A):  

For each state sB = {<s’A, s’C >} of B1 and each transition t from sB, check that for all 

pairs <s’A, s’C > associated with sB , there are transitions from s’A in A that may accept all 

input interactions that may be produced by B in state sB and by C in state s’C  If this 

condition is not satisfied for some transition t, prune transition t using Algorithm 5-2 

below.  At the end, eliminate all states of B1 that have become unreachable from the 

initial state and all transitions from these states.  

Because of the unit delay assumption, the possible outputs produced by a transition 

from the current state should not depend on the inputs that trigger the transition. 

Therefore, if in state s, there is a transition producing certain combination of values at the 

output interfaces, then there should be transitions producing the same combination of 

output values for all combinations of input values that are accepted in state s. These 

different transitions may, however, lead to different next states. In the following, we 

write It for the combination of input values that trigger a transition t, and Ot for the 

combination of output values produced by t.  

In order to preserve the unit delay assumption during transition pruning, we propose 

the following algorithm: 

Algorithm 5-2 (pruning transitions - synchronous input-output  communication): 

Input: a set of transitions of the solution state machine B (to be eliminated).  

Step (a): For each transition t do the following. (Note: the transition cannot be simply 

deleted because the input interactions are not controllable by component B; the machine 

must be able to accept the input in the starting state of the transition. Therefore we may 

have to eliminate the current state.) 

If there is another transition t’ in the starting state of t with It’ = It and Ot’ = Ot 

(but may enter a different state) then delete transition t.  

Else, if there is another transition t’ in the starting state of t with It’ = It and Ot’ ≠ 

Ot then all transitions t’’ from the starting state with Ot’’ = Ot should be deleted 

(including t).   

Else,  prune all transitions that lead to the starting state of t. This case introduces 

a recursive process and will eventually lead to the elimination of the starting 

state of t together with all other transitions starting in that state.  
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Step (b): Delete any state from the state machine B that is not any more accessible from 

the initial state. Also delete any outgoing transitions from these states. 

 

As an example we consider a variation of the example from Figure 4. We assume 

that the interface IA represents input to component B, interface IB represents output from 

component A, and interface IC represents output from B which is input to A, as shown in 

Figure 8(b). The behaviors of C and A are as shown in Figure 4 (a) and (b). Note, 

however, that A assumes that in state 1 no input c2 nor c3 will occur, in state 2 no input c1, 

and in state 4 no input c1 nor c3. Therefore, the transition (a1,i,c3) of the solution in Figure 

4(d) will result in undefined input for A in the joint state (4, (1,2 or 2,4)) shown in Figure 

4(e). This transition would therefore be pruned by Algorithm 5-1 which, in turn, reduces 

the realized subset of C. We note that in this example, all additional transitions included 

in the maximal solution (as compared with the reduced maximal one) lead to non-

specified input for A and will therefore be pruned. 

It is interesting to note that the additional transitions provided by the maximal 

solution (as compared with the reduced maximal solution considered here) are not very 

useful. Under the unit delay assumption, they are either not executable because prevented 

by component A (as already mentioned in Section 3.3), or they give rise to undefined 

input for component A and must therefore be pruned. In the example considered above, 

all additional transitions (for details, see Section 3.3) lead to undefined input, since the 

interface IC goes from B to A.  

We note that Algorithms 3-2 and 3-4 for finding prefix-closed solutions and 

solutions without deadlocks, respectively, can be used in the context of input-output 

interactions, But Algorithm 5-2 must be used for pruning transitions, instead of 

Algorithm 3-3.  

 

5.2.2. Partially specified IOA with interleaving semantics 

Similar to Section 5.2.1, in this case the equations  (1LTS), (3LTS) and (5LTS) can be applied 

where the behavior predicates Ci (for i = A, B and C) have the form Ci = Ci
Ass Ci

Guar . 

For the reduced maximal solution one obtains the same formula as (5syn-IOA) above, 

except that the interleaving hiding operator hide(LTS) is used instead of the synchronous 

hide. For prefix-closed regular behaviors, Algorithms 3-1, 3-2 and 3-4 may be adapted as 

explained in Section 4.2. Algorithm 3-3 for pruning transitions is replaced by Algorithm 

5-3 below, and Algorithm 5-1 for avoiding undefined input for component A is also 

easily adapted to interleaving semantics. 

The transition pruning algorithm is much simpler than in the case of synchronous 

communication, because with interleaving, each transition has only one interaction, either 

input or output, and there is no need for the unit delay assumption. The following 

algorithm can be used: 
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Algorithm 5-3 (for pruning transitions – interleaved input-output  communication): 

Input: a set of transitions of the solution state machine B (to be eliminated).  

Step (a): For each of the given transition t do the following: 

If t produces an output, delete the transition from B. 

If t is triggered by input do the following. (Note that the transition cannot be 

eliminated because input interactions are not controllable by component B). 

Prune all transitions that lead to the starting state of t. (Note, this is a 

recursive process and will eventually lead to the elimination of the 

starting state of t together with all other transitions starting in that state).  

Step (b): Delete any state from the state machine B that is not any more accessible from 

the initial state. Also delete any outgoing transitions from these states. 

An example similar to the example for LTS submodule construction is shown in 

Figures 9. The main difference with the system shown in Figure 7 is the fact that each 

interaction has a direction, representing output for one side and input for the other, as 

shown in Figure 8(c).  Using the diagrams of Figure 7(a) and (b) for the definition of the 

behaviors of C and A, we obtain the diagram of Figure 7(d) as reduced maximal solution. 

This solution does not generate any undefined input for A; in fact, it does not send any 

output to A. As discussed above, one would normally prune the transitions c3 and c4 

because they lead to deadlocks, but since they are input transitions, they can only be 

pruned by eliminating their starting state. However, their starting state is the initial state. 

Therefore there is no solution without deadlock. 

In order to avoid these deadlocks in this example, one has to make changes to the 

given specifications of C or A. One may, for instance, delete the c3 and c4 transitions 

from the behavior of A. Or, if one inverts the direction of these interactions, that is c3 and 

c4 become input to A and output for B, we may delete these transitions from the behavior 

of B (see Figure 7(d)). In this case, there is another reason for deleting them: they lead to 

undefined inputs, if they are executed from the initial state before A does its b1 or b2 

transitions. 

We note that we get a completely different system when the direction of the IA and IB 

interfaces are exchanged. In this case, we can assume that the environment will provide 

an a-interaction that matches the preceding b-interactions. Note that in the case 

considered above, it was the responsibility of the joint behavior of A and B to produce a1 

after b1 and a2 after b2. Now we obtain the reduced maximal solution shown in Figure 

9(a). We note that in this case the labels a1 and a2 written next to the states of Figure 7(a) 

and (b) can be dropped, since they represent forbidden transition labels from those states, 

which is, in this case, enforced by the environment, by assumption.  

The concept of “maximal solution” in the context of specifications with assumptions 

and guarantees means that the guarantees are weakest and the assumptions strongest. For 

instance one could propose the much simpler solution shown in Figure 9(b); however, it 

makes fewer assumptions about the order between c and a interactions. 
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Figure 9: Two solutions to the submodule construction problem for behaviors of C and A as 

shown in Figure 7 and the interfaces of Figure 8(c), but input-output interchanged for 

interfaces IA and IB 

 

6. CONCLUDING DISCUSSION 

The problem of submodule construction (or sometimes called equation solving) has some 

important applications for real-time control systems, communication gateway design, 

testing of embedded components, and component re-use for system design in general. 

Several equations and algorithms for solving this problem have been presented in the 

literature based on different specification formalisms for the dynamic behavior of the 

desired global system and the existing submodule, and depending on different 

communication patterns between the different system components (see references in the 

Introduction). In this paper, we have shown that this problem can also be formulated in a 

more general setting using first-order logic. It turns out that solutions to this problem in 

logic are quite simple. We show in this paper that these solutions (and their proof of 

correctness) can be mapped into the different specification formalisms and 

communication patterns considered in the earlier work. Therefore this paper provides, in 

a sense, new proofs of correctness for the solutions of the submodule construction 

problem described in earlier work.  

One of the contributions of this paper is to show the similarity of the different 

equations and algorithms that were developed for the different settings. In logic, the 

corresponding problem presents itself as a question of equation solving. The basic 

solution of Equations (3) can be proved through elementary transformations of first-order 

logic in four lines. The proof that it is maximal is of similar complexity. And the 

improved, so-called reduced solution of Equation (5) needs a few more lines to be 

justified. We note that Equation (5syn) for synchronous communication is obtained from 

Equation (5) by rewriting using the definition of the hiding operator. And Equation (5syn) 

leads directly to Algorithm 3-1 because, in the case of regular behaviors, the logic 

operators used in the equation (e.g. complement, product and hiding) correspond directly 

to operations on regular behaviour definitions, as explained in Section 3.4. Therefore the 

proof of Equation (5) in the logic context provides at the same time a proof of correctness 

for Algorithm 3-1. Details are explained in the proof of the algorithm. Algorithm 3-1 is 
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similar to part of what is described in [Yevtushenko 2000] where Equation (3) is 

presented in a slightly different notation.  

Most papers on submodule construction use either a language-based approach 

proposed by [Ramage 1989] or algorithms related to Equation (3). We have shown in 

Section 2.3 that Equation (5) leads to equivalent solutions that are more compact. 

Equation (5) was first presented in [Bochmann 1980], in a slightly different notation and 

in an informal manner. A formal proof was given in [Hagverdi 1999].  

We show in Section 4 how the equations for synchronous communication, e.g. 

Equation (5syn), can be converted into the context of interleaving semantics by providing 

a simple scheme for simulating interleaved communication by synchronous 

communication. A proof following the same steps as the proof of Equation (5) can be 

used to prove Equation (5LTS), which has the same form as Equation (5syn), except that the 

hiding operator for interleaving semantics is used. Because of the same form of the 

equations, the algorithms for synchronous communication can also be used for 

interleaving semantics if the composition and hiding operators for interleaving semantics 

are used.  

Much work has also been done on submodule construction for interleaved 

input/output communication. This includes on the one side much work on designing 

controllers for discrete event systems (following the approach of [Ramage 1989]) where 

one may consider that inputs to the controller are not controllable while outputs are 

controllable. On the other side, there are several works that consider specifications in the 

form of IOA [Lynch 1989], IOTS [Tretmans 1996] or interface automata [DeLuca 2001] 

and present solutions to the submodule construction problem [Qin 1991, Drissi 1999 and 

2000, Bochmann 2002, Bhaduri 2008]. [Drissi 2000] uses an approach like Equation (3) 

and also talks about optional progress properties. The proofs in these papers are relatively 

complex. Therefore I think that this paper provides new, simple proofs of correctness for 

several earlier approaches to submodule construction.  

 The problem of submodule construction is addressed in this paper in its most simple 

architecture, as shown in Figure 2(b). In practical applications, one often encounters the 

problem in slightly more general architectures, such as the following: 

 More than two system components: Let us consider the situation where all 

components but one have a known behaviour, and the remaining component 

should be designed such that a desired global behaviour is obtained for the 

overall system. This situation can be reduced to Figure 2(b) by constructing the 

behaviour of component A in the figure as the composition of all known 

component behaviors. 

 More visibility for the controller: The architecture of Figure 2(b) results in 

minimal visibility; for instance, the interactions between A and B are not 

involved in the desired behaviour of C, and component B (e.g. the controller) 

cannot see the interactions between component A and the environment. There 

have been various papers that deal with more general situations [Drissi 1999, 
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Yevtushenko 2000], whereas the basic principles remain the same. However, it 

is important to note that the submodule construction becomes much simpler 

when the unknown component B is able to observe all interactions in the system, 

including all interactions at the interface between A and the environment. In this 

case the hiding of the interactions at this interface, during Step 3 of Algorithm 3-

1, is not necessary and therefore does not introduce any non-determinism (which 

simplifies all subsequent operations). 

This paper provides the following new contributions: 

 Formulation of an equation solving problem in logic and equations for the 

maximal and reduced maximal solutions, together with proofs of correctness 

(see Section 2). It is also shown that these equations can be applied to the 

submodule construction problem in the context of the different communication 

paradigms considered in this paper (see Sections 3, 4 and 5).  

 A clarification of the merits of the maximal and reduced maximal solutions (see 

Sections 2, 4 and 5). 

 A component composition paradigm for synchronous rendezvous 

communication where each system transition implies simultaneous rendezvous 

interactions at all component interfaces.  

 A uniform presentation of algorithms for deriving prefix-closed and deadlock-

free solutions (in the case of regular behaviors) and the characterization of 

transition pruning in the context of the different communication paradigms (see 

Sections 3.5, 5.2.1 and 5.2.2). 

 Algorithms for finding progressive solutions (see Sections 3.6 and 4.2). 

We note that the solution algorithms are restricted to regular behavior specifications, 

however, the solution equations derived for the different communication paradigms are of 

quite general nature within the context of trace semantics, that is, when the behaviors of 

the system, and its components, are characterized by sets of possible execution histories. 

A simple example where the traces of the given component specifications are given by 

logic properties is discussed in Section 3.2. The solution equations also apply to extended 

state machines with interaction parameters and state variables, as discussed in [Daou 

2005].  

There are several works on submodule construction that go beyond trace semantics. 

One area of concern are hard real-time properties that are included in the specifications 

(see for instance [Brandin 1994, Maler 1995, Drissi 2000] ). Other work deals with 

conformance relations finer than trace inclusion, for instance [Qin 1991] considers the 

bisimulation relation; [Tao 1995] considers reduction of nondeterminism, and  [Thistle 

1995] considers liveness assertions. It is not clear whether the logic-based approach 

would be useful to describe such situations. 
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